Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2016 | public
Book Section - Chapter

Measuring the Effective Fracture Toughness of Heterogeneous Materials

Abstract

Heterogeneous materials where the scale of the heterogeneities is small compared to the scale of applications are common in nature. These materials are also engineered synthetically with the aim of improving performance. The overall properties of heterogeneous materials can be different from those of its constituents; however, it is challenging to characterize effective fracture toughness of these materials. We present a new method of experimentally determining the effective fracture toughness. The key idea is to impose a steady process at the macroscale while allowing the fracture process to freely explore at the level of microstructure. We apply a time-dependent displacement boundary condition called the surfing boundary condition that corresponds to a steadily propagating macroscopic crack opening displacement. We then measure the full-field displacement using digital image correlation (DIC) method, and use it to obtain the macroscopic energy release rate. In particular, we develop a global approach to extract information from DIC. The effective toughness is obtained at the peak of the energy release rate. Finally, the full field images also provide us insight into the role of the microstructure in determining effective toughness.

Additional Information

© 2016 The Society for Experimental Mechanics, Inc. We gratefully acknowledge the financial support of the U.S. National Science Foundation (Grant No. CMMI-1201102).

Additional details

Created:
August 22, 2023
Modified:
January 13, 2024