Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2016 | Supplemental Material + Published
Journal Article Open

Catalysis by framework zinc in silica-based molecular sieves

Abstract

Microporous and mesoporous zincosilicates (e.g., CIT-6, VPI-8, Zn-MFI, and Zn-MCM-41) synthesized in the presence of alkali cations contain two broad types of Zn sites: one that is a dication analog of the monocation ion-exchangeable Al-site in aluminosilicates, while the other resembles isolated Zn sites on amorphous silica. The ratio of these sites varies, depending on the synthesis conditions of the zincosilicate. Post-synthetic strategies based on ion-exchange can alter the site distribution towards either population. Furthermore, post-synthetic introduction of isolated Zn sites of the latter type is possible for materials possessing silanol nests. Both types of sites behave as Lewis acid centers in probe-molecule IR spectroscopy, but have very different catalytic properties. Due to the unusually high adsorption energies of Lewis bases on such materials, Lewis acid catalysis is difficult at low temperatures and in solvents bearing Lewis basic functionality. However, at high temperatures, in hydrocarbon solvents, CIT-6 (Zn-beta) is able to selectively catalyze the Lewis-acid-catalyzed Diels–Alder cycloaddition–dehydration reactions of ethylene with methyl 5-(methoxymethyl)furan-2-carboxylate, a furan that can be derived quantitatively by partial oxidation of biomass-based 5-hydroxymethylfurfural. Additionally, zinc in silica-based molecular sieves is shown here to enable chemistries previously not accessible with framework Sn-, Ti- and Zr-based Lewis acid sites, e.g., the direct production of dimethyl terephthalate by Diels–Alder cycloaddition–dehydration reactions of ethylene and the dimethyl ester of furan-2,5-dicarboxilic acid.

Additional Information

© 2016 The Royal Society of Chemistry. Received 14th October 2015. Accepted 4th January 2016. First published online 04 Jan 2016. This work was financially supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DESC0001004. M. O. acknowledges funding from the National Science Foundation Graduate Research Fellowship Program under Grant DGE-1144469. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank Dr Stacey I. Zones (Chevron Energy Technology Company) for supplying the structure directing agent used in the synthesis of SSZ-33 and for helpful discussions, Dr Mona Shahgholi (Caltech) for the use of GC-MS, and Dr Joshua Pacheco and Dr Mark Deimund for helpful discussions regarding the technical aspects of Diels–Alder reactions and CIT-6 synthesis, respectively. All publication charges for this article have been paid for by the Royal Society of Chemistry.

Attached Files

Published - c5sc03889h.pdf

Supplemental Material - c5sc03889h1.pdf

Files

c5sc03889h.pdf
Files (2.0 MB)
Name Size Download all
md5:2ff47d06ee92ea600060f121ec9e5249
847.6 kB Preview Download
md5:e963eaf5651cfebc4f9ce118d1151a37
1.1 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023