Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1988 | public
Journal Article

Nuclear magnetic resonance microscopy with 4-μm resolution: Theoretical study and experimental results

Abstract

Nuclear magnetic resonance(NMR) microscopy with 4‐μm resolution, a step closer to the 1‐μm resolution with which in vivo cellular imaging would be possible is described. An analysis of the ultimate resolution and voxel size dependent signal‐to‐noise ratio (SNR) in NMR microscopy is presented and experimentally verified. For microscopic scale objects (<1‐mm diameter), the SNR based on the geometrical scale factor (s) is found to be proportional to s n where n<2, rather than n=3 as previously supposed. This comes about because of a drastic reduction in sample noise coupled with a significant sensitivity gain realized in small diameter radio-frequency coils. A new pulse sequence which reduces both diffusion dependent resolution degradation and signal attenuation is presented. The selection of optimal bandwidth and acquisition time for maximal SNR is discussed. Experimental results obtained on both a 2.0‐T whole‐body system and a 7.0‐T small bore system adapted for microscopy indicate the potentials of 4‐μm resolution microscopy with the existing magnets.

Additional Information

© 1988 American Association of Physicists in Medicine. Received 24 February 1988. Accepted 20 June 1988.

Additional details

Created:
August 19, 2023
Modified:
October 25, 2023