Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2015 | public
Journal Article

Segmented Thermoelectric Oxide-Based Module for High-Temperature Waste Heat Harvesting

Abstract

We report a high-performance thermoelectric (TE) oxide-based module using the segmentation of half-Heusler Ti_(0.3)Zr_(0.35)Hf_(0.35)CoSb_(0.8)Sn_(0.2) and misfit-layered cobaltite Ca_3Co_4O_(9+δ) as the p-leg and 2 % Al-doped ZnO as the n-leg. The maximum output power of a 4-couple segmented module at ΔT=700 K attains a value of approximately 6.5 kW m^(−2), which is three times higher than that of the best reported non-segmented oxide module. The TE properties of individual legs, as well as the interfacial contact resistances, were characterized as a function of temperature. Numerical modeling was used to predict the efficiency and to evaluate the influence of the electrical and thermal losses on the performance of TE modules. Initial long-term stability tests of the module at the hot and the cold side temperatures of 1073 K and 444 K, respectively, showed a promising result with 4 % degradation for 48 h operating in air.

Additional Information

© 2015 John Wiley & Sons, Inc. Manuscript Revised: 9 July 2015; Manuscript Received: 9 June 2015; First published: 27 August 2015.

Additional details

Created:
August 20, 2023
Modified:
October 25, 2023