Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 5, 2015 | Submitted
Report Open

Hot-wire Measurements in Low Reynolds Number Hypersonic Flows

Abstract

Measurements were made of the heat loss and recovery temperature of a fine hot-wire at a nominal Mach number of 5.8. Data were obtained over an eight-fold range of Reynolds numbers in the transitional regime between continuum and free-molecule flow. At high Reynolds numbers, the heat transfer data agree well with the results of Laufer and McClellan, which were obtained at lower Mach numbers. At lower Reynolds numbers, the results indicate a monotonic transition between continuum and free molecule heat transfer laws. The slope of the heat transfer correlation also appears to vary monotonically, with Nu=√Re at high Reynolds numbers and Nu ~ Re for Re < < 1. Data on the wire recovery temperature (corresponding to zero net heat transfer) were obtained for free-stream Knudsen numbers between 0.4 and 3.0. Comparison with previous data suggests that for Mach numbers greater than about two the normalized variation of recovery temperature in the transitional regime is a unique function of the free-stream Knudsen number. The steady-state hot-wire may be used to obtain two thermodynamic measurements: the rate of heat transfer from the wire and the wire recovery temperature. An illustrative experiment was performed in the wake of a transverse cylinder, using both hot-wire and pressure instruments in a redundant system of measurements. It was shown that good accuracy may be obtained with a hot-wire even when the Reynolds number based on wire diameter is small.

Additional Information

Army Ordnance Contracts DA-04-495-Ord-1960 and DA-04-495-ORD-3231.

Attached Files

Submitted - No._63.pdf

Files

No._63.pdf
Files (13.8 MB)
Name Size Download all
md5:637280f3ca9d6f11d71b589a7c0e94f3
13.8 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024