Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 1, 2012 | Published + Submitted + Supplemental Material
Journal Article Open

Solar energy generation in three dimensions

Abstract

We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions. We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate measured energy densities (energy per base area, kWh/m2) higher by a factor of 2–20 than stationary flat PV panels for the structures considered here, compared to an increase by a factor of 1.3–1.8 for a flat panel with dual-axis sun tracking. The increased energy density is countered by a larger solar cell area per generated energy for 3DPV compared to flat panels (by a factor of 1.5–4 in our conditions), but accompanied by a vast range of improvements. 3DPV structures can mitigate some of the variability inherent to solar PV as they provide a more even source of solar energy generation at all latitudes: they can double the number of peak power generation hours and dramatically reduce the seasonal, latitude and weather variations of solar energy generation compared to a flat panel design. Self-supporting 3D shapes can create new schemes for PV installation and the increased energy density can facilitate the use of cheaper thin film materials in area-limited applications. Our findings suggest that harnessing solar energy in three dimensions can open new avenues towards Terawatt-scale generation.

Additional Information

© 2012 Royal Society of Chemistry. Received 20th January 2012, Accepted 21st February 2012. First published on the web 8th March 2012. The authors are grateful to Vladimir Bulovic for many useful discussions. Some of the calculations were carried out at Teragrid computing facilities.

Attached Files

Published - C2EE21170J.pdf

Submitted - 1112.3266.pdf

Supplemental Material - c2ee21170j.mov

Supplemental Material - c2ee21170j.pdf

Files

1112.3266.pdf
Files (20.5 MB)
Name Size Download all
md5:12666ef43f3dab96053e1f0361572876
16.8 MB Preview Download
md5:bd87b88b49a9b6138ed538015d9a94c4
1.8 MB Download
md5:e2c4bd59bc85140783126eee8567c457
1.4 MB Preview Download
md5:d53c96374f3705acfdced90024f42fef
384.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023