Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2015 | Published
Journal Article Open

Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

Abstract

Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

Additional Information

© 2015 Macmillan Publishers Limited. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. Received 06 January 2015; Accepted 26 March 2015; Published 02 June 2015. This research was supported by the SciDAC Program on Excited State Phenomena in Energy Materials funded by the US Department of Energy, Office of Basic Energy Sciences and by the Advanced Scientific Computing Research, under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory which provided for algorithm and code developments and simulations; and by the National Science Foundation under grant DMR 10-1006184 which provided for basic theory and formalism. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences and by the the US Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy. These authors contributed equally to this work: Marco Bernardi & Jamal Mustafa.

Attached Files

Published - ncomms8044.pdf

Files

ncomms8044.pdf
Files (1.1 MB)
Name Size Download all
md5:90d55e10a1fba63aa511e54eeb26f2e3
1.1 MB Preview Download

Additional details

Created:
September 15, 2023
Modified:
October 23, 2023