Planck 2015 results. XVII. Constraints on primordial non-Gaussianity
Abstract
The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators – separable template-fitting (KSW), binned, and modal – we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone ƒ^(local)_(NL) = 2.5 ± 5.7, ƒ^(equil)_(NL)= -16 ± 70, , and ƒ^(ortho)_(NL) = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain ƒ^(local)_(NL) = 0.8 ± 5.0, ƒ^(equil)_(NL)= -4 ± 43, and ƒ^(ortho)_(NL) = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial trispectrum amplitude in the local model is constrained to be g^(local)_(NL) = (−9.0±7.7)×10^4 (68% CL statistical), and we perform an analysis of trispectrum shapes beyond the local case. The global picture that emerges is one of consistency with the premises of the ΛCDM cosmology, namely that the structure we observe today was sourced by adiabatic, passive, Gaussian, and primordial seed perturbations.
Additional Information
© 2016 ESO. Received: 6 February 2015; Accepted: 27 January 2016; Published online 20 September 2016. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MINECO, JA, and RES (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC and PRACE (EU). A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.cosmos.esa.int/web/planck/planck-collaboration. Some of the results in this paper have been derived using the HEALPix package. Part of this work was undertaken on the STFC COSMOS@DiRAC HPC Facility at the University of Cambridge, funded by UK BIS NEI grants. We gratefully acknowledge IN2P3 Computer Center (http://cc.in2p3.fr) for providing a significant amount of the computing resources and services needed for the analysis with the binned bispectrum estimator. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also acknowledge the IAP magique3 computer facilities. Some computations were performed on the GPC cluster at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, and the University of Toronto.Attached Files
Published - aa25836-15.pdf
Submitted - 1502.01592v1.pdf
Files
Name | Size | Download all |
---|---|---|
md5:a480e73c875f48da6f63a7279e8b96c1
|
16.0 MB | Preview Download |
md5:4044a90cea1be827b8998f2b179c54ac
|
11.2 MB | Preview Download |
Additional details
- Eprint ID
- 60315
- Resolver ID
- CaltechAUTHORS:20150918-082428843
- European Space Agency (ESA)
- Centre National d'Études Spatiales (CNES)
- Centre National de la Recherche Scientifique (CNRS)
- Institut National des Sciences de l'Univers (INSU)
- Institut National de Physique Nucléaire et de Physique des Particules (IN2P3)
- Institut National du Patrimoine (INP)
- Agenzia Spaziale Italiana (ASI)
- Consiglio Nazionale delle Ricerche (CNR)
- Istituto Nazionale di Astrofisica (INAF)
- NASA
- Department of Energy (DOE)
- Science and Technology Facilities Council (STFC)
- United Kingdom Space Agency (UKSA)
- Consejo Superior de Investigaciones Científicas (CSIC)
- Ministerio de Economía, Industria y Competitividad (MINECO)
- Junta de Andalucía
- RES (Spain)
- Finnish Funding Agency for Technology and Innovation (Tekes)
- Academy of Finland
- Finnish IT Center for Science (CSC)
- Deutschen Zentrums für Luft- und Raumfahrt (DLR)
- Max-Planck-Gesellschaft
- Canadian Space Agency (CSA)
- DTU Space (Denmark)
- State Secretariat for Education, Research and Innovation (SER)
- Swiss Space Office (SSO)
- Research Council of Norway
- Science Foundation, Ireland
- Fundação para a Ciência e a Tecnologia (FCT)
- Ministério da Ciência, Tecnologia e Ensino Superior (MCTES)
- European Research Council (ERC)
- PRACE (EU)
- UK BIS NEI Grants
- Department of Energy (DOE)
- DE-AC02-05CH11231
- Canada Foundation for Innovation
- Compute Canada
- Government of Ontario
- University of Toronto
- Created
-
2015-09-18Created from EPrint's datestamp field
- Updated
-
2023-03-15Created from EPrint's last_modified field
- Caltech groups
- Infrared Processing and Analysis Center (IPAC), COSMOS