Published August 1996 | public
Journal Article

Degradation of 4-Chlorophenol, 3,4-Dichloroaniline, and 2,4,6-Trinitrotoluene in an Electrohydraulic Discharge Reactor

An error occurred while generating the citation.

Abstract

An electrohydraulic discharge (EHD) process for the treatment of hazardous chemical wastes in water has been developed. The liquid waste in a 4-L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (>14 000 K) plasma channel created by an EHD emits ultraviolet radiation and produces an intense shockwave as it expands against the surrounding water. The oxidative degradation of 4-chlorophenol (4-CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6-trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by dC/dN = −k_1C_i − k_0, where dC/dN is the change in concentration per discharge; Ci is the initial substrate concentration; k_0 is the zero-order term that accounts for direct photolysis; and k1 is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4-L reactor, the values of these two rate constants are k_0 = 0.73 ± 0.08 μM discharge^(-1) and k_1 = (9.4 ± 1.4) × 10^(-4) discharge^(-1). For a 200 μM 4-CP solution, this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^(-1) and a G value of 4.45 × 10^(-3). Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 μM TNT solution resulted in the complete degradation of TNT and a 34% reduction of the total organic carbon (TOC). The intrinsic initial rate constant of TNT degradation was 0.024 M s^(-1). The results of these experiments demonstrate the potential application of the EHD process for the treatment of hazardous wastes.

Additional Information

© 1996 American Chemical Society. Received for review November 13, 1995. Revised manuscript received April 25, 1996. Accepted April 29, 1996.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023