Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2013 | Published
Book Section - Chapter Open

The Space Density Evolution of Wet and Dry Mergers in the Canada-France-Hawaii Telescope Legacy Survey

Abstract

We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in Bridge et al. (2010). By analyzing the internal colors of these systems, we show that so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z ∼ 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M_(stellar) > 10^(11)M☉) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually-assumed merging timescale of ∼ 0.5–1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate mass ellipticals are 10–100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early-types, even if incorrect for the most massive ones.

Additional Information

© 2013 Astronomical Society of the Pacific.

Attached Files

Published - 477-0145.pdf

Files

477-0145.pdf
Files (482.8 kB)
Name Size Download all
md5:947533ed0a21883cdb2804dd327db184
482.8 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024