Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 6, 2014 | Published
Book Section - Chapter Open

The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview

Abstract

We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system (NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a very large vacuum cryogenic system.

Additional Information

© 2014 SPIE. The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the Association of Canadian Universities for Research in Astronomy (A CURA), the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, and the Department of Science and Technology of India and their supported institutes. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the National Research Council of Canada, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Universities for Research in Astronomy (AURA), the U.S. National Science Foundation and the National Institutes of Natural Sciences of Japan.

Attached Files

Published - Moore_2014p914724.pdf

Files

Moore_2014p914724.pdf
Files (3.8 MB)
Name Size Download all
md5:f8ef9d1021b5ef804d6f8adc534aa9bb
3.8 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 13, 2024