Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 28, 2014 | Published
Book Section - Chapter Open

Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

Abstract

The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam (HSC) works on the imaging part. HSC's excellent image qualities have proven the high quality of the Wide Field Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design Review and is now in a phase of subsystem Critical Design Reviews and construction. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip. The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After successful production of mechanical and optical samples, mass production is now complete. Following careful investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards, mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to work as predicted, and spectrographs have been designed to avoid small possible residual resonances.

Additional Information

© 2014 SPIE. We gratefully acknowledge support from the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) program "Subaru Measurements of Images and Redshifts (SuMIRe)", CSTP, Japan, and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Brasil. We appreciate staff members at Subaru Telescope for continuously supporting our activities. We thank NAOJ ATC staff members particularly Tetsuo Nishino, Norio Okada, and Yukiko Kamata for preparing AlN pin bases, and Durham University staff members for their consultancy to IPMU on fiber system. We also acknowledge the WFMOS-B team whose accumulated efforts of many years have inspired us.

Attached Files

Published - Sugai_2014p91470T.pdf

Files

Sugai_2014p91470T.pdf
Files (5.4 MB)
Name Size Download all
md5:e3cd66b953347dc5a888e36b19f762f2
5.4 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
January 13, 2024