Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 15, 2015 | Published + Submitted
Journal Article Open

Directed search for gravitational waves from Scorpius X-1 with initial LIGO data

Abstract

We present results of a search for continuously emitted gravitational radiation, directed at the brightest low-mass x-ray binary, Scorpius X-1. Our semicoherent analysis covers 10 days of LIGO S5 data ranging from 50–550 Hz, and performs an incoherent sum of coherent F-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3×10^(−24) and 8×10^(−25) are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof-of-principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ∼1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector.

Additional Information

© 2015 American Physical Society. Received 3 December 2014; published 26 March 2015. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory, the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector, the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the French Centre National de la Recherche Scientifique (CNRS) for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Australian Research Council, the International Science Linkages program of the Commonwealth of Australia, the Council of Scientific and Industrial Research of India, Department of Science and Technology, India, Science & Engineering Research Board (SERB), India, Ministry of Human Resource Development, India, the Spanish Ministerio de Economía y Competitividad, the Conselleria d'Economia i Competitivitat and Conselleria d'Educació, Cultura i Universitats of the Govern de les Illes Balears, the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, the Polish Ministry of Science and Higher Education, the FOCUS Programme of Foundation for Polish Science, the European Union, the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the National Aeronautics and Space Administration, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the National Science and Engineering Research Council Canada, the Brazilian Ministry of Science, Technology, and Innovation, the Carnegie Trust, the Leverhulme Trust, the David and Lucile Packard Foundation, the Research Corporation, and the Alfred P. Sloan Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.

Attached Files

Published - PhysRevD.91.062008.pdf

Submitted - 1412.0605v1.pdf

Files

PhysRevD.91.062008.pdf
Files (3.8 MB)
Name Size Download all
md5:7f8df7fe3302b4ed3f0d0362f1742cc0
2.6 MB Preview Download
md5:79a05663de34c3f3305bb271557d1c23
1.2 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 23, 2023