Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 2015 | Submitted
Journal Article Open

Linear Elastic Fracture Mechanics Predicts the Propagation Distance of Frictional Slip

Abstract

When a frictional interface is subject to a localized shear load, it is often (experimentally) observed that local slip events propagate until they arrest naturally before reaching the edge of the interface. We develop a theoretical model based on linear elastic fracture mechanics to describe the propagation of such precursory slip. The model's prediction of precursor lengths as a function of external load is in good quantitative agreement with laboratory experiments as well as with dynamic simulations, and provides thereby evidence to recognize frictional slip as a fracture phenomenon. We show that predicted precursor lengths depend, within given uncertainty ranges, mainly on the kinetic friction coefficient, and only weakly on other interface and material parameters. By simplifying the fracture mechanics model, we also reveal sources for the observed nonlinearity in the growth of precursor lengths as a function of the applied force. The discrete nature of precursors as well as the shear tractions caused by frustrated Poisson's expansion is found to be the dominant factors. Finally, we apply our model to a different, symmetric setup and provide a prediction of the propagation distance of frictional slip for future experiments.

Additional Information

© 2015 Springer. Received: 15 August 2014; Accepted: 6 December 2014; Published online: 23 January 2015. The research described in this article is supported by the European Research Council (ERCstg UFO-240332) and the Swiss National Science Foundation (grant PMPDP2-145448). JPA was funded by US NSF (grant EAR-1015704).

Attached Files

Submitted - 1408.4413v1.pdf

Files

1408.4413v1.pdf
Files (628.2 kB)
Name Size Download all
md5:1eb5b710398371c2cdc7fbb61c05ac8e
628.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023