Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2007 | public
Journal Article

A nanoscale probe for fluidic and ionic transport

Abstract

Surface science and molecular biology are often concerned with systems governed by fluid dynamics at the nanoscale, where different physical behaviour is expected. With advances in nanofabrication techniques, the study of fluid dynamics around a nano-object or in a nano channel is now more accessible experimentally and has become an active field of research. However, developing nanoscale probes that can act as flow sensors and that can be easily integrated remains difficult. Many studies demonstrate that carbon nanotubes (CNTs) have outstanding potential for nanoscale sensing, acting as strain or charge sensors in chemical and biological environments. Although nanotube flow sensors composed of bulk nanotubes have been demonstrated, they are not readily miniaturized to nanoscale dimensions. Here we report that individual carbon nanotube transistors of ~2 nm diameter, incorporated into microfluidic channels, locally sense the change in electrostatic potential induced by the flow of an ionic solution. We demonstrate that the nanotube conductance changes in response to the flow rate, functioning as a nanoscale flow sensor.

Additional Information

© 2007 Nature Publishing Group. Received 9 October 2006; accepted 21 December 2006; published online: 28 January 2007. The authors wish to thank the Micro/Nano Fabrication Laboratory at Caltech where the sample fabrication was performed. This work was sponsored by Schlumberger. The work in Lausanne was supported by the Swiss NSF and its NCCR 'Nanoscale Science'.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023