Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 11, 2002 | public
Journal Article

Direct visuomotor transformations for reaching

Abstract

The posterior parietal cortex (PPC) is thought to have a function in the sensorimotor transformations that underlie visually guided reaching, as damage to the PPC can result in difficulty reaching to visual targets in the absence of specific visual or motor deficits. This function is supported by findings that PPC neurons in monkeys are modulated by the direction of hand movement, as well as by visual, eye position and limb position signals. The PPC could transform visual target locations from retinal coordinates to hand-centred coordinates by combining sensory signals in a serial manner to yield a body-centred representation of target location, and then subtracting the body-centred location of the hand. We report here that in dorsal area 5 of the PPC, remembered target locations are coded with respect to both the eye and hand. This suggests that the PPC transforms target locations directly between these two reference frames. Data obtained in the adjacent parietal reach region (PRR) indicate that this transformation may be achieved by vectorially subtracting hand location from target location, with both locations represented in eye-centred coordinates.

Additional Information

© 2002 Macmillan Magazines Ltd. Received 3 September 2001; Accepted 25 January 2002. This work was supported by the Defense Advanced Research Projects Agency (DARPA), the National Eye Institute, the Sloan-Schwartz Center for Theoretical Neurobiology, the James G. Boswell Foundation and an NIH training grant fellowship to C.A.B. We thank B. Gillikin and V. Shcherbatyuk for technical assistance; D. Dubowitz for collecting and processing the MRI data; J. Baer and J.Wynne for veterinary care; and C. Reyes-Marks for administrative assistance. We also thank J. Boline and K. Shenoy for comments.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023