Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 23, 2003 | public
Journal Article

A broadband superconducting detector suitable for use in large arrays

Abstract

Cryogenic detectors are extremely sensitive and have a wide variety of applications (particularly in astronomy), but are difficult to integrate into large arrays like a modern CCD (charge-coupled device) camera. As current detectors of the cosmic microwave background (CMB) already have sensitivities comparable to the noise arising from the random arrival of CMB photons, the further gains in sensitivity needed to probe the very early Universe will have to arise from large arrays. A similar situation is encountered at other wavelengths. Single-pixel X-ray detectors now have a resolving power of ΔE < 5 eV for single 6-keV photons, and future X-ray astronomy missions anticipate the need for 1,000-pixel arrays. Here we report the demonstration of a superconducting detector that is easily fabricated and can readily be incorporated into such an array. Its sensitivity is already within an order of magnitude of that needed for CMB observations, and its energy resolution is similarly close to the targets required for future X-ray astronomy missions.

Additional Information

© 2003 Nature Publishing Group. Received 10 March; accepted 2 September 2003. This work has been supported in part by NASA (Aerospace Technology Enterprise), the JPL Director's Research and Development Fund, and the Caltech President's Fund. We are grateful for the support of A. Lidow, Caltech Trustee.

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024