Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2001 | Published
Book Section - Chapter Open

Space-time autocoding constellations with pairwise-independent signals

Abstract

The space-time autocoding effect implies that arbitrarily reliable communication is possible within a single coherence interval in Rayleigh flat fading as the symbol-duration of the coherence interval and the number of transmit antennas grow simultaneously. For relatively short (e.g., 16-symbol) coherence intervals, a codebook of isotropically random unitary space-time signals theoretically supports transmission rates that are a significant fraction of autocapacity with an extremely low probability of error. However a constellation of the required size (typically L = 280) is impossible to generate and store, and due to lack of structure there is little hope of finding a fast decoding scheme. We propose a random, but highly structured, constellation that is completely specified by log, L independent isotropically distributed unitary matrices. The distinguishing property of this construction is that any two signals in the constellation are pairwise statistically independent and isotropically distributed. Thus, the pairwise probability of error, and hence the union bound on the block probability of error, of the structured constellation is identical to that of a fully random constellation of independent signals.

Additional Information

© 2001 IEEE.

Attached Files

Published - 00936189.pdf

Files

00936189.pdf
Files (86.7 kB)
Name Size Download all
md5:e51c481db8fce8e41f324be02bd5f26c
86.7 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024