Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2014 | public
Journal Article

Models for the large eddy simulation equations to describe multi-species mixing occuring at supercritical pressure

Abstract

An existing database of direct numerical simulations (DNS) representing mixing of species under supercritical pressure (supercritical-ρ) conditions has been investigated for the purpose of understanding the modeling of the gradient of the filtered pressure, the divergence of the filtered heat flux, and the divergence of the filtered species mass flux, all in the context of large eddy simulation (LES). The analysis consists of two separate parts. The activities of all terms appearing in the LES equations are first evaluated, and the dominant terms for each of the transport equations are identified. These data are used to check whether the standard LES assumptions−i.e., that the three above quantities are equal to the gradient of the pressure and the divergences of the fluxes computed from the filtered flow field, respectively−that are routinely used for atmospheric-ρ flows, continue to be valid also in the realm of supercritical-ρ conditions. Having found that these assumptions do not hold under supercritical-ρ conditions, alternative modeling strategies for these terms are proposed, and their accuracy with respect to the standard LES assumptions is assessed.

Additional Information

© 2014 by Begell House, Inc. This study was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology (Caltech), and sponsored al Caltech by the Department of Energy, Basic Energy Sciences under the direction of Dr. W. Sisk and Dr. M. Pederson.

Additional details

Created:
August 20, 2023
Modified:
October 20, 2023