Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2014 | Published
Journal Article Open

Configuration of a Southern Ocean Storm Track

Abstract

Diagnostics of ocean variability that reflect and influence local transport properties of heat and chemical species vary by an order of magnitude along the Southern Ocean's Antarctic Circumpolar Current (ACC). Topographic "hotspots" are important regions of localized transport anomalies. This study uses a primitive equation channel model to investigate the structure of eddy kinetic energy (EKE), one measure of variability, in an oceanic regime. A storm-track approach emphasizes the importance of stationary eddies, which result from flow interactions with topography, on setting EKE distributions. The influence of these interactions extends far downstream of the topography and impacts EKE patterns through localized convergence and divergence of heat. Unlike for zonal averages, local contributions to the stationary fluxes from terms that integrate to zero in a zonal average are important. The simulations show a strong sensitivity of the zonal structure as well as the distribution and amplitude of stationary eddy fluxes to the surface wind forcing. By focusing on local, time-averaged stationary eddy fluxes, insight into the dynamical structure of the ACC can be gained that is concealed in the averaging procedure associated with traditional zonal or along-stream analyses.

Additional Information

© 2014 American Meteorological Society. Manuscript received 4 April 2014, in final form 12 July 2014. We thank Andrew Stewart and Andreas Klocker for comments on drafts of this paper and two anonymous reviewers for suggestions that improved its quality. This work was supported by NSF Grants OCE-1235488 and AGS-1019211.

Attached Files

Published - jpo-d-14-0062.1.pdf

Files

jpo-d-14-0062.1.pdf
Files (1.1 MB)
Name Size Download all
md5:8476177850d8f53689ed95302d97a259
1.1 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 19, 2023