Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 21, 2008 | Supplemental Material
Journal Article Open

A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands

Abstract

Temporal variations of the frictional resistance on subduction-zone plate boundary faults associated with the stick–slip cycle of large interplate earthquakes are thought to modulate the stress regime and earthquake activity within the subducting oceanic plate. Here we report on two great earthquakes that occurred near the Kuril islands, which shed light on this process and demonstrate the enhanced seismic hazard accompanying triggered faulting. On 15 November 2006, an event of moment magnitude 8.3 ruptured the shallow-dipping plate boundary along which the Pacific plate descends beneath the central Kuril arc. The thrust ruptured a seismic gap that previously had uncertain seismogenic potential, although the earlier occurrence of outer-rise compressional events had suggested the presence of frictional resistance. Within minutes of this large underthrusting event, intraplate extensional earthquakes commenced in the outer rise region seaward of the Kuril trench, and on 13 January 2007, an event of moment magnitude 8.1 ruptured a normal fault extending through the upper portion of the Pacific plate, producing one of the largest recorded shallow extensional earthquakes. This energetic earthquake sequence demonstrates the stress transfer process within the subducting lithosphere, and the distinct rupture characteristics of these great earthquakes illuminate differences in seismogenic properties and seismic hazard of such interplate and intraplate faults.

Additional Information

© 2008 Nature Publishing Group. Received 18 July; accepted 21 November 2007. This work made use of GMT and SAC software and Federation of Digital Seismic Networks (FDSN) seismic data. The Incorporated Research Institutions for Seismology (IRIS) Data Management System (DMS) was used to access the data. This work was supported by an NSF grant and a USGS Award.

Attached Files

Supplemental Material - nature06521-s1.pdf

Files

nature06521-s1.pdf
Files (3.5 MB)
Name Size Download all
md5:cb49ad22a5140e47b180eb253c9f2b3e
3.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023