Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 16, 2005 | Supplemental Material + Published
Journal Article Open

Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation

Abstract

A module for predicting the dynamic evolution of the gas phase species and the aerosol size and composition distribution during formation of secondary organic aerosol (SOA) is presented. The module is based on the inorganic gas-aerosol equilibrium model Simulating the Composition of Atmospheric Particles at Equilibrium 2 (SCAPE2) and updated versions of the lumped Caltech Atmospheric Chemistry Mechanism (CACM) and the Model to Predict the Multiphase Partitioning of Organics (MPMPO). The aerosol phase generally consists of an organic phase and an aqueous phase containing dissolved inorganic and organic components. Simulations are presented in which a single salt (either dry or aqueous), a volatile organic compound, and oxides of nitrogen undergo photo-oxidation to form SOA. Predicted SOA mass yields for classes of aromatic and biogenic hydrocarbons exhibit the proper qualitative behavior when compared to laboratory chamber data. Inasmuch as it is currently not possible to represent explicitly aerosol phase chemistry involving condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA formation model available yet will undergo continued improvement in the future.

Additional Information

Copyright 2005 by the American Geophysical Union. Received 20 July 2004; revised 26 October 2004; accepted 21 December 2004; published 15 March 2005. This work was performed, in part (RJG), under STAR Research Assistance agreement R831083 awarded by the U.S. Environmental Protection Agency (EPA) through a subcontract from the University of California at Davis. It has not been formally reviewed by EPA. The views expressed in this document are solely those of the authors, and EPA does not endorse any products or commercial services mentioned in this publication. This work was additionally supported, in part (DD), by the CAREER Award grant ATM-9985025 from the National Science Foundation. This work was also supported, in part (JHS), by the Electric Power Research Institute. Thank you also to William Allen and Satish Vutukuru for support in production of the figures in this manuscript and to anonymous reviewers for many helpful comments.

Attached Files

Published - jgrd11725.pdf

Supplemental Material - jgrd11725-sup-0001-t01.txt

Supplemental Material - jgrd11725-sup-0002-t02.txt

Files

jgrd11725.pdf
Files (695.5 kB)
Name Size Download all
md5:63c346e80bd882ad882f665f2177b96c
688.9 kB Preview Download
md5:bcf42975606ec85531cea7d47ec6f4df
4.2 kB Preview Download
md5:b68a9d14619e3af5f461a756ce7d3457
2.4 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023