The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types
- Creators
- De Looze, Ilse
- Cornier, Diane
- Lebouteiller, Vianney
- Madden, Suzanne
- Baes, Marten
- Bendo, George J.
-
Boquien, Médéric
- Boselli, Alessandro
-
Clements, David L.
-
Cortese, Luca
-
Cooray, Asantha
-
Galametz, Maud
- Galliano, Frédéric
- Graciá-Carpio, Javier
- Isaak, Kate
- Karczewski, Oskar Ł.
- Parkin, Tara J.
- Pellegrini, Eric W.
- Rémy-Ruyer, Aurélie
- Spinoglio, Luigi
-
Smith, Matthew W. L.
- Sturm, Eckhard
Abstract
Aims. We analyze the applicability of far-infrared fine-structure lines [Cii] 158 μm, [Oi] 63 μm, and [Oiii] 88 μm to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and, furthermore, extend the analysis to a broad sample of galaxies of various types and metallicities in the literature. Methods. We study the trends and scatter in the relation between the SFR (as traced by GALEX FUV and MIPS 24 μm) and far-infrared line emission, on spatially resolved and global galaxy scales, in dwarf galaxies. We assemble far-infrared line measurements from the literature and infer whether the far-infrared lines can probe the SFR (as traced by the total infrared luminosity) in a variety of galaxy populations. Results. In metal-poor dwarfs, the [Oi]_(63) and [Oiii]_(88) lines show the strongest correlation with the SFR with an uncertainty on the SFR estimates better than a factor of 2, while the link between [Cii] emission and the SFR is more dispersed (uncertainty factor of 2.6). The increased scatter in the SFR–L_([CII]) relation toward low metal abundances, warm dust temperatures, and large filling factors of diffuse, highly ionized gas suggests that other cooling lines start to dominate depending on the density and ionization state of the gas. For the literature sample, we evaluate the correlations for a number of different galaxy populations. The [Cii] and [Oi]_(63) lines are considered to be reliable SFR tracers in starburst galaxies, recovering the star formation activity within an uncertainty of factor 2. For sources with composite and active galactic nucleus (AGN) classifications, all three FIR lines can recover the SFR with an uncertainty factor of 2.3. The SFR calibrations for ultra-luminous infrared galaxies (ULIRGs) are similar to starbursts/AGNs in terms of scatter but offset from the starburst/AGN SFR relations because of line deficits relative to their total infrared luminosity. While the number of detections of the FIR fine-structure lines is still very limited at high redshift for [Oi]_(63) and [Oiii]_(88), we provide an SFR calibration for [Cii].
Additional Information
© 2014 ESO. Received 14 August 2013. Accepted 7 May 2014. Published online 14 August 2014. I.D.L. is a postdoctoral researcher of the FWO-Vlaanderen (Belgium). V.L. is supported by a CEA/Marie Curie Eurotalents fellowship. This research was supported by the Agence Nationale pour la Recherche (ANR) through the programme SYMPATICO (Programme Blanc Projet ANR-11-BS56- 0023). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAFIFSI/ OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/ MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff University (UK) and including Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC and UKSA (UK); and NASA (USA).Attached Files
Published - aa22489-13.pdf
Submitted - 1402.4075v2.pdf
Files
Name | Size | Download all |
---|---|---|
md5:a723a19387b412ed5e6a731a06d04eb6
|
1.5 MB | Preview Download |
md5:1062353953699cb1e4d17b9aeebae501
|
1.4 MB | Preview Download |
Additional details
- Eprint ID
- 50484
- Resolver ID
- CaltechAUTHORS:20141017-094313833
- Marie Curie Fellowship
- Agence Nationale pour la Recherche (ANR)
- ANR-11-BS56-0023
- Canadian Space Agency (CSA)
- National Astronomical Observatories, Chinese Academy of Sciences (NAOC)
- Commissariat à l'Energie Atomique (CEA)
- Agenzia Spaziale Italiana (ASI)
- Ministerio de Ciencia e Innovación (MCINN)
- Swedish National Space Board (SNSB)
- Science and Technology Facilities Council (STFC)
- NASA
- Centre National de la Recherche Scientifique (CNRS)
- Centre National d'Études Spatiales (CNES)
- United Kingdom Space Agency (UKSA)
- Created
-
2014-10-17Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field