Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2014 | Supplemental Material
Journal Article Open

The quest for regolithic howardites. Part 2: Surface origins highlighted by noble gases

Abstract

We report noble gas data of helium (He), neon (Ne), argon (Ar), krypton (Kr) and xenon (Xe), cosmic ray exposure (CRE) ages and nominal gas retention (K–Ar, U–Th–He) ages for seven howardites (CRE 01400, EET 87513, EET 87518, EET 99400, GRO 95535, GRO 95602, SAN 03472), in continuing research to identify regolithic samples, and better understand the vestan regolith. In our previous work, we found little correlation between suggested regolith parameters of Ni > 300 μg/g, Al_2O_3 8–9 wt% and eucrite/diogenite (E:D) ratio of 2:1 (Warren et al., 2009), and trapped solar wind (SW), fractionated solar wind (FSW) or planetary noble gas components (from impacted material) – noble gas indicators of a regolithic origin. Here, we have expanded our data set to include samples outside of these parameters to further explore composition, and the differences in Ni content as indicators for the presence of non-Vesta material. In addition, our sample set includes two potentially paired meteorites from the GRO suite. Finally, in our petrographic studies, the samples selected showed no evidence for carbonaceous chondrite fragments, which should reduce the effect of "contamination" by planetary noble gas components, and will allow us to better identify SW/FSW components, where present. Of the samples studied here, three howardites GRO 95535, GRO 95602 and EET 87513 show evidence for a regolithic origin, with both isotopic and element noble gas ratios clearly pointing to the presence of trapped components similar to SW/FSW or planetary. The two GRO howardites, GRO 95535 and GRO 95602, show similar noble gas ratios to our previously defined SW/FSW dominated regolithic group (LEW 85313 and MET 00423), suggesting a surface origin for these samples. However, interestingly, the GRO samples show vastly different cosmogenic noble gas abundances, and thus different CRE ages, which suggests that they are not paired. For howardite EET 87513, the data hint to the presence of CM-material, with a neon release pattern similar to our defined planetary/FSW dominated regolithic group (CM-rich samples PRA 04401, SCO 06040). Our petrological investigations found no evidence for CM fragments within EET 87513, though a single clast was reported previously (Buchanan et al., 1993). Aside from the Ne release pattern, the remaining noble gas data show more similarity with SW/FSW components. The remaining four howardites CRE 01400, EET 87518, EET 99400, and SAN 03472 and are dominated by cosmogenic noble gases, and show no evidence for a regolithic origin. Our data suggest that a CM-composition is likely present in all samples to some degree, but that this can be overprinted by SW components or cosmogenic components obtained in situ on the vestan surface or during transit to Earth respectively. The presence of CM material is an important parameter for understanding the evolution of Vesta's surface. While we have uncovered three further regolithic howardites (∼13 regolithic total, of ∼41 analysed), further noble gas analysis of HED meteorites is needed to not only determine regolithic origins, but to better characterise the abundance of carbonaceous chondrite material and its effect on the noble gas signatures of such samples.

Additional Information

© 2014 Elsevier Ltd. Received 25 October 2013; accepted in revised form 22 May 2014; available online 4 June 2014. We thank the National Science Foundation (USA) for funding the ANSMET collecting teams that brought back the Antarctic samples studied here, and the Meteorite Working Group, NASA Johnson Space Center and the National Museum of Natural History (Smithsonian Institution) for allocation of the samples. We are grateful to K. McBride and C. Satterwhite for extraction of the samples used in this work. DWM's participation in this project, and bulk sample major and trace element analyses were funded through NASA's Cosmochemistry Program. We would like to thank M.M.M. Meier, I. Leya and an anonymous reviewer for their helpful and constructive comments on this research, as well as Associate Editor P. Burnard for his useful comments and handling of the manuscript, to which the discussion greatly benefitted.

Attached Files

Supplemental Material - mmc1.xlsx

Files

Files (11.9 kB)
Name Size Download all
md5:e43ff169d5d979231ffcecdf3218ef14
11.9 kB Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023