Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 26, 2014 | Supplemental Material
Journal Article Open

Amorphous Molybdenum Phosphide Nanoparticles for Electrocatalytic Hydrogen Evolution

Abstract

Amorphous molybdenum phosphide (MoP) nanoparticles have been synthesized and characterized as electrocatalysts for the hydrogen-evolution reaction (HER) in 0.50 M H_2SO_4 (pH 0.3). Amorphous MoP nanoparticles (having diameters of 4.2 ± 0.5 nm) formed upon heating Mo(CO)6 and trioctylphosphine in squalane at 320 °C, and the nanoparticles remained amorphous after heating at 450 °C in H_2(5%)/Ar(95%) to remove the surface ligands. At mass loadings of 1 mg cm^–2, MoP/Ti electrodes exhibited overpotentials of −90 and −105 mV (−110 and −140 mV without iR correction) at current densities of −10 and −20 mA cm^–2, respectively. These HER overpotentials remained nearly constant over 500 cyclic voltammetric sweeps and 18 h of galvanostatic testing, indicating stability in acidic media under operating conditions. Amorphous MoP nanoparticles are therefore among the most active known molybdenum-based HER systems and are part of a growing family of active, acid-stable, non-noble-metal HER catalysts.

Additional Information

© 2014 American Chemical Society. Received: June 4, 2014; revised: July 15, 2014; published: July 17, 2014. This work was supported at PSU by the National Science Foundation (NSF) Center for Chemical Innovation on Solar Fuels (CHE-1305124) and at Caltech by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award DE-SC0004993. TEM imaging was performed in the Penn State Microscopy and Cytometry Facility (University Park, PA) and HRTEM imaging, EDS spectra, XPS spectra, and DRIFTS spectra were acquired at the Materials Characterization Laboratory of the Penn State Materials Research Institute. J.M.M. thanks Jennifer Gray for assistance with analyzing the XPS spectra and Dr. Thomas Gordon for assistance with quantitative yield experiments.

Attached Files

Supplemental Material - cm502035s_si_001.pdf

Files

cm502035s_si_001.pdf
Files (2.9 MB)
Name Size Download all
md5:67e604806743b60320309fb153ad9e23
2.9 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023