Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 27, 2009 | Supplemental Material
Journal Article Open

Topological surface states protected from backscattering by chiral spin texture

Abstract

Topological insulators are a new class of insulators in which a bulk gap for electronic excitations is generated because of the strong spin–orbit coupling inherent to these systems. These materials are distinguished from ordinary insulators by the presence of gapless metallic surface states, resembling chiral edge modes in quantum Hall systems, but with unconventional spin textures. A key predicted feature of such spin-textured boundary states is their insensitivity to spin-independent scattering, which is thought to protect them from backscattering and localization. Recently, experimental and theoretical efforts have provided strong evidence for the existence of both two- and three-dimensional classes of such topological insulator materials in semiconductor quantum well structures and several bismuth-based compounds, but so far experiments have not probed the sensitivity of these chiral states to scattering. Here we use scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy to visualize the gapless surface states in the three-dimensional topological insulator Bi_(1-x)Sb_x, and examine in detail the influence of scattering from disorder caused by random alloying in this compound. We show that, despite strong atomic scale disorder, backscattering between states of opposite momentum and opposite spin is absent. Our observations demonstrate that the chiral nature of these states protects the spin of the carriers. These chiral states are therefore potentially useful for spin-based electronics, in which long spin coherence is critical, and also for quantum computing applications, where topological protection can enable fault-tolerant information processing.

Additional Information

© 2014 Macmillan Publishers Limited. Received 13 May 2009; Accepted 21 July 2009; Published online 9 August 2009. We acknowledge K. K. Gomes and A. N. Pasupathy for suggestions about experimental procedure and initial analysis. This work was supported by grants from ONR, ARO, DOE, NSF-DMR and the NSF-MRSEC programme through the Princeton Center for Complex Materials. P.R. acknowledges an NSF graduate fellowship.

Attached Files

Supplemental Material - nature08308-s1.pdf

Files

nature08308-s1.pdf
Files (1.0 MB)
Name Size Download all
md5:e64584a59fb678824159076407a732dc
1.0 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 17, 2023