Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2002 | public
Journal Article

An equivalent linear algorithm with frequency- and pressure-dependent moduli and damping for the seismic analysis of deep sites

Abstract

The seismic analysis of soil deposits is most often carried out with an iterative computational scheme, proposed by Seed and Idriss, in which inelastic effects are only approximately modeled through soil degradation curves. Laboratory experimental data indicate that for highly confined materials, the standardized reduction curves commonly used overestimate the capacity of soils to dissipate energy. This paper first presents the results obtained with a simple four-parameter constitutive soil model, which when used to simulate cyclic loading, produces results that agree well with available laboratory experiments for soils under arbitrarily large confining pressures. Thereafter, a frequency- and pressure-dependent iterative algorithm for seismic amplification is proposed, which provides time histories that match well the results obtained with a true non-linear model. Finally, the modified linear iterative analysis is successfully used for the seismic analysis of a 1 km deep model for the Mississippi embayment near Memphis, Tennessee, and a class-A prediction of the seismic amplification in Treasure Island during the Loma Prieta earthquake.

Additional Information

Copyright © 2002 Elsevier.

Additional details

Created:
August 21, 2023
Modified:
October 17, 2023