Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2011 | Published
Journal Article Open

Ecological sensitivity: a biospheric view of climate change

Abstract

Climate change is often characterized in terms of climate sensitivity, the globally averaged temperature rise associated with a doubling of the atmospheric CO2 (equivalent) concentration. In this study, we develop and apply two new ecological sensitivity metrics, analogs of climate sensitivity, to investigate the potential degree of plant community changes over the next three centuries. We use ten climate simulations from the Intergovernmental Panel on Climate Change Fourth Assessment Report, with climate sensitivities from 2–4°C. The concept of climate sensitivity depends upon the continuous nature of the temperature field across the Earth's surface. For this research, the bridge between climate change and biospheric change predictions is provided by the Equilibrium Vegetation Ecology model (EVE), which simulates a continuous description of the Earth's terrestrial plant communities as a function of climate. The ecosensitivity metrics applied to the results of EVE simulations at the end of the twenty-first century result in 49% of the Earth's land surface area undergoing plant community changes and 37% of the world's terrestrial ecosystems undergoing biome-scale changes. EVE is an equilibrium model, and, although rates of ecological change are not addressed, the resultant ecological sensitivity projections provide an estimate of the degree of species turnover that must occur for ecosystems to be in equilibrium with local climates. Regardless of equilibrium timescales, the new metrics highlight the Earth's degree of ecological sensitivity while identifying ecological "hotspots" in the terrestrial biosphere's response to projected climate changes over the next three centuries.

Additional Information

© The Author(s) 2011. This article is published with open access at Springerlink.com. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. Received: 29 January 2009; Accepted: 2 July 2010; Published online: 22 July 2011. The research described in this paper was carried out at the Jet Propulsion Laboratory, Caltech, under a contract with NASA.

Attached Files

Published - art_10.1007_s10584-011-0065-1.pdf

Files

art_10.1007_s10584-011-0065-1.pdf
Files (2.5 MB)
Name Size Download all
md5:349454f6000793a413a3c247bae21064
2.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 17, 2023