Automatic recognition of biological particles in microscopic images
Abstract
A simple and general-purpose system to recognize biological particles is presented. It is composed of four stages: First (if necessary) promising locations in the image are detected and small regions containing interesting samples are extracted using a feature finder. Second, differential invariants of the brightness are computed at multiple scales of resolution. Third, after point-wise non-linear mappings to a higher dimensional feature space, this information is averaged over the whole region thus producing a vector of features for each sample that is invariant with respect to rotation and translation. Fourth, each sample is classified using a classifier obtained from a mixture-of-Gaussians generative model. This system was developed to classify 12 categories of particles found in human urine; it achieves a 93.2% correct classification rate in this application. It was subsequently trained and tested on a challenging set of images of airborne pollen grains where it achieved an 83% correct classification rate for the three categories found during one month of observation. Pollen classification is challenging even for human experts and this performance is considered good.
Additional Information
© 2006 Elsevier B.V. Received 6 September 2005, Revised 1 June 2006, Available online 2 August 2006.Additional details
- Eprint ID
- 47604
- Resolver ID
- CaltechAUTHORS:20140730-101718040
- Created
-
2014-08-18Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field