Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 15, 2014 | Accepted Version
Journal Article Open

Characterizing individual differences in functional connectivity using dual-regression and seed-based approaches

Abstract

A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal–parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity.

Additional Information

© 2014 Elsevier Inc. Accepted 14 March 2014, Available online 21 March 2014. This study was funded by a grant from the National Institutes of Health (NIMH RC1-88680), an Incubator Award from the Duke Institute for Brain Sciences (SAH), and by a NIMH National Research Service Award F31-086248 (DVS). We thank Steve Stanton for hormone analyses and Edward McLaurin for assistance with data collection. We also thank Timothy Strauman and Jacob Young for feedback on previous drafts of the manuscript. DVS is now at Rutgers University.

Attached Files

Accepted Version - nihms590134.pdf

Files

nihms590134.pdf
Files (1.6 MB)
Name Size Download all
md5:25a27bffb7666765d373f3807b9a39bf
1.6 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 26, 2023