Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 23, 2002 | public
Journal Article

Megagauss sensors

Abstract

Magnetic fields change the way that electrons move through solids. The nature of these changes reveals information about the electronic structure of a material and, in auspicious circumstances, can be harnessed for applications. The silver chalcogenides, Ag_2Se and Ag_2Te, are non-magnetic materials, but their electrical resistance can be made very sensitive to magnetic field by adding small amounts-just 1 part in 10, 000-of excess silver. Here we show that the resistance of Ag_2Se displays a large, nearly linear increase with applied magnetic field without saturation to the highest fields available, 600,000 gauss, more than a million times the Earth's magnetic field. These characteristics of large (thousands of per cent) and near-linear response over a large letters to nature field range make the silver chalcogenides attractive as magnetic-field sensors, especially in physically tiny megagauss (10^6 G) pulsed magnets where large fields have been produced but accurate calibration has proved elusive. High-field studies at low temperatures reveal both oscillations in the magnetoresistance and a universal scaling form that point to a quantum origin for this material's unprecedented behaviour.

Additional Information

© 2002 Nature Publishing Group. Received 17 December 2001; accepted 2 April 2002. We thank H. Hwang, L. P. Kadanoff and H. S. Schnyders for discussions, and the late R. Xu for technical assistance. The work at the University of Chicago and at Argonne National Laboratory was supported by DOE Basic Energy Sciences.

Additional details

Created:
August 19, 2023
Modified:
March 5, 2024