Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2, 2014 | Published + Submitted
Journal Article Open

Search for Flavor-Changing Neutral Currents in Top-Quark Decays t → Zq in pp Collisions at √s = 8 TeV

Abstract

A search for flavor-changing neutral currents in top-quark decays t→Zq is performed in events produced from the decay chain tt→Zq+Wb, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7  fb^(−1) of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a t→Zq branching fraction greater than 0.05% at the 95% confidence level.

Additional Information

© 2014 CERN, for the CMS Collaboration. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI. Published 2 May 2014. Received 15 December 2013. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM(Iran);SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia);SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Attached Files

Published - PhysRevLett.112.171802.pdf

Submitted - 1312.4194v2.pdf

Files

1312.4194v2.pdf
Files (828.8 kB)
Name Size Download all
md5:266536259bcf3acf525a3df6d7b23b83
441.7 kB Preview Download
md5:da9f1b797147d21d546fcfff10423b27
387.1 kB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 26, 2023