Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2014 | Submitted
Journal Article Open

The Size and Shape of the Oblong Dwarf Planet Haumea

Abstract

We use thermal radiometry and visible photometry to constrain the size, shape, and albedo of the large Kuiper belt object Haumea. The correlation between the visible and thermal photometry demonstrates that Haumea's high amplitude and quickly varying optical light curve is indeed due to Haumea's extreme shape, rather than large scale albedo variations. However, the well-sampled high precision visible data we present does require longitudinal surface heterogeneity to account for the shape of lightcurve. The thermal emission from Haumea is consistent with the expected Jacobi ellipsoid shape of a rapidly rotating body in hydrostatic equilibrium. The best Jacobi ellipsoid fit to the visible photometry implies a triaxial ellipsoid with axes of length 1,920 × 1,540 × 990 km and density 2.6 g cm ^(−3) , as found by Lellouch et al. (A&A, 518:L147, 2010. doi:10.1051/0004-6361/201014648). While the thermal and visible data cannot uniquely constrain the full non-spherical shape of Haumea, the match between the predicted and measured thermal flux for a dense Jacobi ellipsoid suggests that Haumea is indeed one of the densest objects in the Kuiper belt.

Additional Information

© 2014 Springer Science+Business Media Dordrecht. Received: 4 November 2013; Accepted: 19 February 2014; Published online: 2 March 2014.

Attached Files

Submitted - 1402.4456v1.pdf

Files

1402.4456v1.pdf
Files (196.8 kB)
Name Size Download all
md5:9a9ce156a6278d80a884da2de156fe68
196.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 26, 2023