Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 1, 2014 | Published
Journal Article Open

Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

Abstract

Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012)]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.

Additional Information

© 2014 American Physical Society. Received 13 March 2014; published 7 April 2014. This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences. A.A.A., D.L.A., G.E.G., and S.E.N. were fully supported and J.Y.Y.L. was partially supported by the Scientific User Facilities Division. Neutron scattering experiments were performed at the Spallation Neutron Source, which is sponsored by the Scientific User Facilities Division. We thank B. Fultz, M. E. Hagen, A. I. Kolesnikov, A. J. Ramirez-Cuesta, G. D. Samolyuk, and G. M. Stocks for stimulating discussions. We also thank M. Reuter and S. Campbell for updating the MANTID code to read in the Monte Carlo generated data.

Attached Files

Published - PhysRevB.89.144302.pdf

Files

PhysRevB.89.144302.pdf
Files (1.2 MB)
Name Size Download all
md5:f49100d4ef285b48284f230c1c64d6e7
1.2 MB Preview Download

Additional details

Created:
August 20, 2023
Modified:
October 26, 2023