Tropospheric aerosol as a reactive intermediate
Abstract
In tropospheric chemistry, secondary organic aerosol (SOA) is deemed an end product. Here, on the basis of new evidence, we make the case that SOA is a key reactive intermediate. We present laboratory results on the catalysis by carboxylate anions of the disproportionation of NO_2 'on water': 2NO_2 + H_2O = HONO + NO_3^− + H^+ (R1), and supporting quantum chemical calculations, which we apply to reinterpret recent reports on (i) HONO daytime source strengths vis-à-vis SOA anion loadings and (ii) the weak seasonal and latitudinal dependences of NO_x decay kinetics over several megacities. HONO daytime generation via R1 should track sunlight because it is generally catalyzed by the anions produced during the photochemical oxidation of pervasive gaseous pollutants. Furthermore, by proceeding on the everpresent substrate of aquated airborne particulates, R1 can eventually overtake the photolysis of NO_2: NO_2 + hν = NO + O(^3P) (R2), at large zenith angles. Thus, since R1 leads directly to ˙OH-radical generation via HONO photolysis: HONO + hν = NO + ˙OH, whereas the path initiated by R2 is more circuitous and actually controlled by the slower photolysis of O_3: O_3 + hν (+H_2O) = O_2 + 2˙OH, the competition between R1 and R2 provides a mechanistic switch that buffers ˙OH concentrations and NO_2 decay (via R1 and/or NO_2^+ ˙OH = HNO_3) from actinic flux variations.
Additional Information
© 2013 Royal Society of Chemistry. Received 14th March 2013, Accepted 3rd April 2013. First published online 08 Apr 2013. SE is grateful to the Japan Science and Technology Agency (JST) PRESTO program and Steel Foundation for Environmental Protection Technology. AY is grateful to grant-in-aid from JSPS (Grant 23651014). This work was supported, in part, by NSF Grant AC1238977.Attached Files
Supplemental Material - c3fd00040k.pdf
Files
Name | Size | Download all |
---|---|---|
md5:aa7707560159751fe3641dc0be8fe937
|
318.8 kB | Preview Download |
Additional details
- Eprint ID
- 43618
- Resolver ID
- CaltechAUTHORS:20140203-095934074
- Japan Science and Technology Agency (JST) PRESTO Program
- Steel Foundation for Environmental Protection Technology
- Japan Society for the Promotion of Science (JSPS)
- 23651014
- NSF
- AC1238977
- Created
-
2014-02-03Created from EPrint's datestamp field
- Updated
-
2021-11-10Created from EPrint's last_modified field