Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 12, 2013 | public
Journal Article

Nanostructured β-Cyclodextrin-Hyperbranched Polyethyleneimine (β-CD-HPEI) Embedded in Polysulfone Membrane for the Removal of Humic Acid from Water

Abstract

The synthesis of a new β-cyclodextrin-hyperbranched polyethyleneimine (β-CD-HPEI)/polysulfone (PSf) membranes via interfacial polymerization of trimesoyl chloride and β-CD-HPEI is described in this paper. The membranes were characterized by atomic force microscopy (AFM), high resolution scanning electron microscopy (HR-SEM) and contact-angle measurements. Water permeability and rejection data were obtained using a cross-flow filtration system at 0.69 MPa. The membranes were hydrophilic (25° to 63°), showed high humic acid rejection (>80%), and maintained a constant flux throughout the filtration. The modified membranes were rougher than the pristine PSf membranes but they exhibited better antifouling properties due to the hydrophilic surface which acted as a barrier against humic acid deposition. The modification of PSf with β-CD-HPEI resulted in enhanced hydrophilicity and water permeability while still maintaining high humic acid rejection. Supplemental materials are available for this article. Go to the publisher's online edition of Separation Science & Technology to view the supplemental file.

Additional Information

© 2013 Taylor & Francis Group, LLC. Received: 28 Nov 2012; Accepted: 23 May 2013; Accepted author version posted online: 20 Aug 2013; Published online: 08 Nov 2013. The author S. P. Malinga is grateful to the University of Johannesburg New Generation Scholars (NGS) Programme for funding. The DST/MINTEK Nanotechnology Innovation Centre is also acknowledged for funding this work.

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023