Published November 2013 | public
Journal Article

Thin and Thermally Stable Periodic Metastructures

An error occurred while generating the citation.

Abstract

We design, fabricate, and test thin thermally stable metastructures consisting of bi-metallic unit cells and show how the coefficient of thermal expansion (CTE) of these metastructures can be finely and coarsely tuned by varying the CTE of the constituent materials and the unit cell geometry. Planar and three-dimensional finite element method modeling (FEM) is used to drive our design and inform experiments, and predict the response of these metastructures. We develop a robust experimental fabrication procedure in order to fabricate thermally stable samples with high aspect ratios. We use digital image correlation (DIC) and an infrared camera to experimentally measure displacement and temperature during testing and compute the CTE of our samples. The samples, composed of an aluminum core and an external titanium frame, exhibit a CTE of 2.6 ppm/°C, which is significantly lower than either constituent. These unit cells can be assembled over a large area to create thin low-CTE foils. Finally, we demonstrate how the approach developed in this work can be used to fabricate metastructures with CTE's ranging from −3.6 ppm/°C to 8.4 ppm/°C.

Additional Information

© 2013 Society for Experimental Mechanics. Received: 9 January 2013; Accepted: 2 April 2013; Published online: 18 May 2013. This work was supported by the Keck Institute for Space Studies at the California Institute of Technology. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. We thank Jerry Mulder for support with the laser welding process. We also thank Prof. Sergio Pellegrino and Dr. Namiko Yamamoto for valuable advice and assistance, and Prof. Craig A. Steeves for earlier discussions.

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023