Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2013 | Published
Journal Article Open

Topographic signatures and a general transport law for deep-seated landslides in a landscape evolution model

Abstract

A fundamental goal of studying earth surface processes is to disentangle the complex web of interactions among baselevel, tectonics, climate, and rock properties that generate characteristic landforms. Mechanistic geomorphic transport laws can quantitatively address this goal, but no widely accepted law for landslides exists. Here we propose a transport law for deep-seated landslides in weathered bedrock and demonstrate its utility using a two-dimensional numerical landscape evolution model informed by study areas in the Waipaoa catchment, New Zealand, and the Eel River catchment, California. We define a non-dimensional landslide number, which is the ratio of the horizontal landslide flux to the vertical tectonic flux, that characterizes three distinct landscape types. One is dominated by stochastic landsliding, whereby discrete landslide events episodically erode material at rates exceeding the long-term uplift rate. Another is characterized by steady landsliding, in which the landslide flux at any location remains constant through time and is greatest at the steepest locations in the catchment. The third is not significantly affected by landsliding. In both the "stochastic landsliding" and "steady landsliding" regimes, increases in the non-dimensional landslide number systematically reduce catchment relief and widen valley spacing, producing long, low angle hillslopes despite high uplift rates. The stochastic landsliding regime captures the frequent observation that deep-seated landslides produce large sediment fluxes from small areal extents while being active only a fraction of the time. We suggest that this model is adaptable to a wide range of geologic settings and is useful for interpreting climate-driven changes in landslide behavior.

Additional Information

© 2013 American Geophysical Union. Received 10 August 2012; revised 19 February 2013; accepted 21 February 2013; published 14 May 2013. This work was supported by a NSF Graduate Research Fellowship to AMB, and NSF OCE-0841111 and NASA NNX08AF95G awards to JJR. Greg Tucker, Paolo Tarolli, and Junko Iwahashi provided thorough reviews, and the associate editor Simon Mudd provided additional comments that helped clarify the results and improve the quality of the manuscript. AMB thanks J. Taylor Perron for many landscape evolution modeling discussions and comments on preliminary results; Ben Mackey, Alex Handwerger, Corina Cerovski-Darriau, and Eric Bilderback for many landslide discussions; and Jill Marshall, Rob Skarbek, and Kristin Sweeney for numerous discussions of landscape evolution.

Attached Files

Published - jgrf20051.pdf

Files

jgrf20051.pdf
Files (5.3 MB)
Name Size Download all
md5:30c99eb20e16a39226540f16eb950a96
5.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 25, 2023