Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published July 11, 2013 | Supplemental Material
Journal Article Open

Formation of sharp eccentric rings in debris disks with gas but without planets

Abstract

'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust–gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.

Additional Information

©2013 Macmillan Publishers Limited. Received 27 September 2012; accepted 2 May 2013. Published online 10 July 2013. We thank H. Latter and G. Stewart for discussions. The writing of this paper started at the American Museum of Natural History, with financial support by the National Science Foundation under grant no. AST10-09802, andwas completed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.This research was supported by an allocation of advanced computing resources supported by the National Science Foundation. The computations were performed on the Kraken system at the National Institute for Computational Sciences. W.L. is a Carl Sagan fellow. M.K. is supported in part by the NASA Astrobiology Institute through the Goddard Center for Astrobiology. Author Contributions: W.L. contributed to developing the model, performed the calculations and wrote the manuscript. M.K. contributed to developing the model and writing the manuscript.

Attached Files

Supplemental Material - Supplementary_Information.pdf

Files

Supplementary_Information.pdf
Files (8.8 MB)
Name Size Download all
md5:beea784b32df6a38069cac2853f86a56
8.8 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023