Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 23, 2009 | Published + Supplemental Material
Journal Article Open

The Endo-siRNA Pathway Is Essential for Robust Development of the Drosophila Embryo

Abstract

Background: Robustness to natural temperature fluctuations is critical to proper development in embryos and to cellular functions in adult organisms. However, mechanisms and pathways which govern temperature compensation remain largely unknown beyond circadian rhythms. Pathways which ensure robustness against temperature fluctuations may appear to be nonessential under favorable, uniform environmental conditions used in conventional laboratory experiments where there is little variation for which to compensate. The endo-siRNA pathway, which produces small double-stranded RNAs in Drosophila, appears to be nonessential for robust development of the embryo under ambient uniform temperature and to be necessary only for viral defense. Embryos lacking a functional endo-siRNA pathway develop into phenotypically normal adults. However, we hypothesized that small RNAs may regulate the embryo's response to temperature, as a ribonucleoprotein complex has been previously shown to mediate mammalian cell response to heat shock. Principal Findings: Here, we show that the genes DICER-2 and ARGONAUTE2, which code for integral protein components of the endo-siRNA pathway, are essential for robust development and temperature compensation in the Drosophila embryo when exposed to temperature perturbations. The regulatory functions of DICER-2 and ARGONAUTE2 were uncovered by using microfluidics to expose developing Drosophila embryos to a temperature step, in which each half of the embryo develops at a different temperature through developmental cycle 14. Under this temperature perturbation, dicer-2 or argonaute2 embryos displayed abnormal segmentation. The abnormalities in segmentation are presumably due to the inability of the embryo to compensate for temperature-induced differences in rate of development and to coordinate developmental timing in the anterior and posterior halves. A deregulation of the length of nuclear division cycles 10–14 is also observed in dicer-2 embryos at high temperatures. Conclusions: Results presented herein uncover a novel function of the endo-siRNA pathway in temperature compensation and cell cycle regulation, and we hypothesize that the endo-siRNA pathway may regulate the degradation of maternal cell cycle regulators. Endo-siRNAs may have a more general role buffering against environmental perturbations in other organisms.

Additional Information

Copyright: © 2009 Lucchetta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Received: February 27, 2009; Accepted: August 3, 2009; Published: October 23, 2009. This work was supported by the NIH (1R01GM077331 to R.F.I. and 5R01GM068743-05 to R.W.C.), by the Yen Postdoctoral Fellowship (E.M.L) and was performed in part at the Chicago MRSEC microfluidic facility funded by the NSF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Attached Files

Published - Ismagilov_PLoS_ONE_2009_Endo_siRNA_EL_e7576.pdf

Supplemental Material - Ismagilov_PLoS_ONE_2009_Endo_siRNA_EL_e7576_supplemental.pdf

Files

Ismagilov_PLoS_ONE_2009_Endo_siRNA_EL_e7576_supplemental.pdf
Files (3.4 MB)

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023