Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2010 | Supplemental Material + Accepted Version
Journal Article Open

A Plug-Based Microfluidic System for Dispensing Lipidic Cubic Phase (LCP) Material Validated by Crystallizing Membrane Proteins in Lipidic Mesophases

Abstract

This article presents a plug-based microfluidic system to dispense nanoliter-volume plugs of lipidic cubic phase (LCP) material and subsequently merge the LCP plugs with aqueous plugs. This system was validated by crystallizing membrane proteins in lipidic mesophases, including LCP. This system allows for accurate dispensing of LCP material in nanoliter volumes, prevents inadvertent phase transitions that may occur due to dehydration by enclosing LCP in plugs, and is compatible with the traditional method of forming LCP material using a membrane protein sample, as shown by the successful crystallization of bacteriorhodopsin from Halobacterium salinarum. Conditions for the formation of LCP plugs were characterized and presented in a phase diagram. This system was also implemented using two different methods of introducing the membrane protein: (1) the traditional method of generating the LCP material using a membrane protein sample and (2) post LCP-formation incorporation (PLI), which involves making LCP material without protein, adding the membrane protein sample externally to the LCP material, and allowing the protein to diffuse into the LCP material or into other lipidic mesophases that may result from phase transitions. Crystals of bacterial photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis were obtained using PLI. The plug-based, LCP-assisted microfluidic system, combined with the PLI method for introducing membrane protein into LCP, should be useful for minimizing consumption of samples and broadening the screening of parameter space in membrane protein crystallization.

Additional Information

© Springer 2010. Received: 5 August 2009. Accepted: 22 September 2009. Published online: 14 October 2009. This work was supported through Accelerated Technologies Center for Gene to 3D Structure (ATCG3D) funded by the National Institute of General Medical Sciences (NIGMS), National Center for Research Resources under the PSI-2 Specialized Center program (U54 GM074961); the National Institutes of Health Roadmap for Medical Research (R01 GM075827 and P01 GM75913), and University of Chicago/Argonne National Laboratory (ANL) Collaborative Seed Funding. We thank Nina Ponomarenko and James R. Norris at the University of Chicago for samples of Reaction Center from B. viridis. We thank Ray C. Stevens and Peter Kuhn for helpful discussion and Elizabeth B. Haney for contributions in writing and editing this manuscript. Use of the ANL General Medicine and Cancer Institute Collaborative Access Team (GM/CA CAT) beamlines at the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. DE-AC02-06CH11357. GM/CA CAT has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the NIGMS (Y1-GM-1104).

Attached Files

Accepted Version - nihms153329.pdf

Supplemental Material - Ismagilov_Microfluid_nanofluid_2009_online_first_LCP_plugs_LL_Supp_Mat.pdf

Files

nihms153329.pdf
Files (1.6 MB)
Name Size Download all
md5:3014bf9eeade1ec38bebebdb1776933b
1.6 MB Preview Download
md5:6751c14bffd95fce88c314b99415189c
20.9 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023