Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 13, 2013 | Accepted Version
Journal Article Open

Statistical Mechanics of Monod–Wyman–Changeux (MWC) Models

Abstract

The 50th anniversary of the classic Monod–Wyman–Changeux (MWC) model provides an opportunity to survey the broader conceptual and quantitative implications of this quintessential biophysical model. With the use of statistical mechanics, the mathematical implementation of the MWC concept links problems that seem otherwise to have no ostensible biological connection including ligand–receptor binding, ligand-gated ion channels, chemotaxis, chromatin structure and gene regulation. Hence, a thorough mathematical analysis of the MWC model can illuminate the performance limits of a number of unrelated biological systems in one stroke. The goal of our review is twofold. First, we describe in detail the general physical principles that are used to derive the activity of MWC molecules as a function of their regulatory ligands. Second, we illustrate the power of ideas from information theory and dynamical systems for quantifying how well the output of MWC molecules tracks their sensory input, giving a sense of the "design" constraints faced by these receptors.

Additional Information

© 2013 Published by Elsevier Ltd. Received 4 January 2013; Received in revised form 3 March 2013; Accepted 4 March 2013. Available online 14 March 2013. We are grateful to Bill Bialek, Leonid Mirny, Oleg Igoshin, Ned Wingreen, Robert Endres, Julie Theriot, Jane Kondev, Aleksandra Walczak and Nigel Orme for insightful discussions. We are also indebted to Ron Milo, Madhav Mani, Christopher Hillar, Vanessa M. Burns, Stephanie Marzen, Qinren Zhen, Erik Madsen, Wesley Yu and the anonymous referee for their helpful comments on this paper. We are especially grateful to Prof. Jean-Pierre Changeux for many stimulating discussions and insights on the subject of allostery and the model that bears his name. Financial support from the National Institutes of Health through NIH Award Number R01 GM08421 and the Director's Pioneer Award, grant DP1 OD000217A and La Fondation Pierre Gilles de Gennes (R.P.) and the National Science Foundation Graduate Research Fellowship Program (S.M.) are gratefully acknowledged. Edited by C. Kalodimos.

Attached Files

Accepted Version - nihms494065.pdf

Files

nihms494065.pdf
Files (6.2 MB)
Name Size Download all
md5:496428f21a6b5e39e80a3f0cbd5caf35
6.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023