Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 4, 2013 | Published
Journal Article Open

Symmetry protected topological orders and the group cohomology of their symmetry group

Abstract

Symmetry protected topological (SPT) phases are gapped short-range-entangled quantum phases with a symmetry G. They can all be smoothly connected to the same trivial product state if we break the symmetry. The Haldane phase of spin-1 chain is the first example of SPT phases which is protected by SO(3) spin rotation symmetry. The topological insulator is another example of SPT phases which are protected by U(1) and time-reversal symmetries. In this paper, we show that interacting bosonic SPT phases can be systematically described by group cohomology theory: Distinct d-dimensional bosonic SPT phases with on-site symmetry G (which may contain antiunitary time-reversal symmetry) can be labeled by the elements in H^(1+d)[G,UT(1)], the Borel (1+d)-group-cohomology classes of G over the G module UT(1). Our theory, which leads to explicit ground-state wave functions and commuting projector Hamiltonians, is based on a new type of topological term that generalizes the topological θ term in continuous nonlinear σ models to lattice nonlinear σ models. The boundary excitations of the nontrivial SPT phases are described by lattice nonlinear σ models with a nonlocal Lagrangian term that generalizes the Wess-Zumino-Witten term for continuous nonlinear σ models. As a result, the symmetry G must be realized as a non-on-site symmetry for the low-energy boundary excitations, and those boundary states must be gapless or degenerate. As an application of our result, we can use H^(1+d)[U(1)⋊ Z^(T)_(2),U_T(1)] to obtain interacting bosonic topological insulators (protected by time reversal Z2T and boson number conservation), which contain one nontrivial phase in one-dimensional (1D) or 2D and three in 3D. We also obtain interacting bosonic topological superconductors (protected by time-reversal symmetry only), in term of H^(1+d)[Z^(T)_(2),U_T(1)], which contain one nontrivial phase in odd spatial dimensions and none for even dimensions. Our result is much more general than the above two examples, since it is for any symmetry group. For example, we can use H1+d[U(1)×Z2T,UT(1)] to construct the SPT phases of integer spin systems with time-reversal and U(1) spin rotation symmetry, which contain three nontrivial SPT phases in 1D, none in 2D, and seven in 3D. Even more generally, we find that the different bosonic symmetry breaking short-range-entangled phases are labeled by the following three mathematical objects: (G_H,G_Ψ,H^(1+d)[G_Ψ,U_T(1)]), where G_H is the symmetry group of the Hamiltonian and G_Ψ the symmetry group of the ground states.

Additional Information

© 2013 American Physical Society. Received 5 January 2013; published 4 April 2013. X.G.W. would like to thank Michael Levin for helpful discussions and for sharing his result of bosonic SPT phases in (2 + 1)D.71 This motivated us to calculate H1+d [U(1),U(1)], which reproduced his results for d = 2.Wewould like to thank Geoffrey Lee, Jian-Zhong Pan, and Zhenghan Wang for many very helpful discussions on group cohomology for discrete and continuous groups. Z.C.G. would like to thank Dung-Hai Lee for discussion on the possibility of discretized Berry phase term in (1 + 1)D. This research is supported by NSF Grants No. DMR-1005541, No. NSFC 11074140, and No. NSFC 11274192. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research. Z.C.G. is supported by NSF Grant No. PHY05-51164.

Attached Files

Published - PhysRevB.87.155114.pdf

Files

PhysRevB.87.155114.pdf
Files (3.9 MB)
Name Size Download all
md5:be774a73ec0d9664ad2eddca30db54a9
3.9 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
February 10, 2024