Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2013 | public
Journal Article

Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding

Abstract

The threat of micro-meteoroid and orbital debris (MMOD) collisions with spacecraft and satellites has been increasing with the increasing worldwide use of low earth orbit. Providing low-areal-density shielding for the mitigation of these high velocity impacts is essential for ensuring successful and cost effective missions. Here, we report results obtained from hypervelocity impact testing on bulk metallic glass (BMG) matrix composites. Their carbide-like hardness, low melting temperatures, ultra-high strength-to-weight ratio and the ability to be processed like polymers are material attributes ideally suited for spacecraft shielding, particularly as an outer wall bumper shield.

Additional Information

© 2013 Wiley-VCH Verlag GmbH & Co. Received: October 11, 2012. Final Version: November 1, 2012. Published online: December 11, 2012. This work was supported by the Strategic University Research Partnership at the Jet Propulsion Laboratory, California Institute of Technology. Graduate student support was provided by the Office of Naval Research under grant no. N00014-07-1-1115, the Education Office of the Jet Propulsion Laboratory, California Institute of Technology, and NASA's Exploration Systems Mission Directorate under contract number NNH10ZTT001N. The authors thank the staff of the NASA Ames Vertical Gun Range for their technical support of this effort, especially D. Holt and C. Cornelison. The authors also thank Eric Christiansen of NASA's Johnson Space Center for supplying the ballistic limit equations program and comments.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023