Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 8, 2013 | Published
Journal Article Open

Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C_(12) alkanes

Abstract

Laboratory chamber experiments are the main source of data on the mechanism of oxidation and the secondary organic aerosol (SOA) forming potential of volatile organic compounds. Traditional methods of representing the SOA formation potential of an organic do not fully capture the dynamic, multi-generational nature of the SOA formation process. We apply the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012) to model the formation of SOA from the formation of the four C_(12) alkanes, dodecane, 2- methyl undecane, cyclododecane and hexylcyclohexane, under both high- and low-NO_x conditions, based upon data from the Caltech chambers. In the SOM, the evolution of reaction products is defined by the number of carbon (NC) and oxygen (N_O) atoms, and the model parameters are (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the molecules. Optimal fitting of the model to chamber data is carried out using the measured SOA mass concentration and the aerosol O:C atomic ratio. The use of the kinetic, multi-generational SOM is shown to provide insights into the SOA formation process and to offer promise for application to the extensive library of existing SOA chamber experiments that is available.

Additional Information

© 2013 Author(s). This work is distributed under the Creative Commons Attribution 3.0 License. Published by Copernicus Publications on behalf of the European Geosciences Union. Received: 14 September 2012 – Published in Atmos. Chem. Phys. Discuss.: 15 October 2012; Revised: 23 January 2013 – Accepted: 25 January 2013 – Published: 8 February 2013. This work was supported by the National Science Foundation (ATM-1151062) and the Department of Energy (DE-SC0006626).

Attached Files

Published - acp-13-1591-2013.pdf

Files

acp-13-1591-2013.pdf
Files (8.6 MB)
Name Size Download all
md5:3001d003c7875f387e05498f94fd0bc6
8.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023