The Complex Physics of Dusty Star-forming Galaxies at High Redshifts as Revealed by Herschel and Spitzer
- Creators
- Lo Faro, B.
-
Bock, J.
Abstract
We combine far-infrared photometry from Herschel (PEP/HerMES) with deep mid-infrared spectroscopy from Spitzer to investigate the nature and the mass assembly history of a sample of 31 luminous and ultraluminous infrared galaxies ((U)LIRGs) at z ~ 1 and 2 selected in GOODS-S with 24 μm fluxes between 0.2 and 0.5 mJy. We model the data with a self-consistent physical model (GRASIL) which includes a state-of-the-art treatment of dust extinction and reprocessing. We find that all of our galaxies appear to require massive populations of old (>1 Gyr) stars and, at the same time, to host a moderate ongoing activity of star formation (SFR ≤ 100 M_☉ yr^(–1)). The bulk of the stars appear to have been formed a few Gyr before the observation in essentially all cases. Only five galaxies of the sample require a recent starburst superimposed on a quiescent star formation history. We also find discrepancies between our results and those based on optical-only spectral energy distribution (SED) fitting for the same objects; by fitting their observed SEDs with our physical model we find higher extinctions (by ΔA_V ~ 0.81 and 1.14) and higher stellar masses (by Δlog(M_★) ~ 0.16 and 0.36 dex) for z ~ 1 and z ~ 2 (U)LIRGs, respectively. The stellar mass difference is larger for the most dust-obscured objects. We also find lower SFRs than those computed from L IR using the Kennicutt relation due to the significant contribution to the dust heating by intermediate-age stellar populations through "cirrus" emission (~73% and ~66% of the total L IR for z ~ 1 and z ~ 2 (U)LIRGs, respectively).
Additional Information
© 2013 American Astronomical Society. Received 2012 July 20; accepted 2012 November 19; published 2012 December 20. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. We acknowledge support from ASI (Herschel Science Contract I/005/11/0). PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM(France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). SPIRE has been developed by a consortium of institutes led by Cardiff Univ. (UK) and including: Univ. Lethbridge (Canada); NAOC (China); CEA, LAM (France); IFSI, Univ. Padua (Italy); IAC (Spain); Stockholm Observatory (Sweden); Imperial College London, RAL, UCL-MSSL, UKATC, Univ. Sussex (UK); and Caltech, JPL, NHSC, Univ. Colorado (USA). This development has been supported by national funding agencies: CSA (Canada); NAOC (China); CEA, CNES, CNRS (France); ASI (Italy); MCINN (Spain); SNSB (Sweden); STFC, UKSA (UK); and NASA (USA)Attached Files
Published - 0004-637X_762_2_108.pdf
Files
Name | Size | Download all |
---|---|---|
md5:c575f09ced8378aca0be0d646b2cf9de
|
2.1 MB | Preview Download |
Additional details
- Eprint ID
- 36777
- Resolver ID
- CaltechAUTHORS:20130205-104441854
- ASI Herschel Science Contract
- I/005/11/0
- BMVIT (Austria)
- ESA-PRODEX (Belgium)
- CEA/CNES (France)
- DLR (Germany)
- ASI/INAF (Italy)
- CICYT/MCYT (Spain)
- CSA (Canada)
- NAOC (China)
- CEA (France)
- CNES (France)
- CNRS (France)
- ASI (Italy)
- MCINN (Spain)
- SNSB (Sweden)
- STFC (UK)
- UKSA (UK)
- NASA
- Created
-
2013-02-05Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field