Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake
Abstract
We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [ Ji et al., 2001 ] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [ Ji et al., 2002b ]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 × 10^20 N m and that most of the slip occurred in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ∼2.0 km s^(−1), and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3) the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.
Additional Information
© 2003 American Geophysical Union. Received 16 January 2002; accepted 29 April 2003; published 4 September 2003. We thank the Taiwan Central Weather Bureau for maintaining the strong motion network and S. B. Yu for the collection of GPS data. We are grateful for Hiroo Kanamori, Cliff Thurber, Steven Day, and an anonymous reviewer for helpful comments on this manuscript. This work is supported by NSF (EAR-0106701) and USGS (02HQGR0063). This is contribution 8450 of the Seismological Laboratory, Division of the Geological and Planetary Science, California Institute of Technology.Attached Files
Published - 2002JB001764.pdf
Files
Name | Size | Download all |
---|---|---|
md5:bb319deed3b7b3615a397549b54c9a37
|
24.1 MB | Preview Download |
Additional details
- Eprint ID
- 35831
- Resolver ID
- CaltechAUTHORS:20121205-135137809
- NSF
- EAR-0106701
- USGS
- 02HQGR0063
- Created
-
2012-12-06Created from EPrint's datestamp field
- Updated
-
2021-11-09Created from EPrint's last_modified field
- Other Numbering System Name
- Caltech Division of the Geological and Planetary Sciences
- Other Numbering System Identifier
- 8450