Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2010 | public
Journal Article

Testing for treeness: lateral gene transfer, phylogenetic inference, and model selection

Abstract

A phylogeny that allows for lateral gene transfer (LGT) can be thought of as a strictly branching tree (all of whose branches are vertical) to which lateral branches have been added. Given that the goal of phylogenetics is to depict evolutionary history, we should look for the best supported phylogenetic network and not restrict ourselves to considering trees. However, the obvious extensions of popular tree-based methods such as maximum parsimony and maximum likelihood face a serious problem—if we judge networks by fit to data alone, networks that have lateral branches will always fit the data at least as well as any network that restricts itself to vertical branches. This is analogous to the well-studied problem of overfitting data in the curve-fitting problem. Analogous problems often have analogous solutions and we propose to treat network inference as a case of model selection and use the Akaike Information Criterion (AIC). Strictly tree-like networks are more parsimonious than those that postulate lateral as well as vertical branches. This leads to the conclusion that we should not always infer LGT events whenever it would improve our fit-to-data, but should do so only when the improved fit is larger than the penalty for adding extra lateral branches.

Additional Information

© 2010 Springer Science+Business Media B.V. Published online: 7 May 2010. We thank David Baum, Rob Beiko, Matt Haber, Ehud Lamm, Bret Larget, Luay Nakhleh, Mike Steel, and an anonymous referee for helpful discussion. This paper was first presented at the workshop, Perspectives on the Tree of Life, sponsored by the Leverhulme Trust and held in Halifax, Nova Scotia, July, 2009.

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023