Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 1, 2012 | Submitted
Journal Article Open

Quantum algorithms for invariants of triangulated manifolds

Abstract

One of the apparent advantages of quantum computers over their classical counterparts is their ability to efficiently contract tensor networks. In this article, we study some implications of this fact in the case of topological tensor networks. The graph underlying these networks is given by the triangulation of a manifold, and the structure of the tensors ensures that the overall tensor is independent of the choice of internal triangulation. This leads to quantum algorithms for additively approximating certain invariants of triangulated manifolds. We discuss the details of this construction in two specific cases. In the first case, we consider triangulated surfaces, where the triangle tensor is defined by the multiplication operator of a finite group; the resulting invariant has a simple closed-form expression involving the dimensions of the irreducible representations of the group and the Euler characteristic of the surface. In the second case, we consider triangulated 3-manifolds, where the tetrahedral tensor is defined by the so-called Fibonacci anyon model; the resulting invariant is the well-known Turaev-Viro invariant of 3-manifolds.

Additional Information

© 2012 Rinton Press. Received May 12, 2011. Revised May 31, 2012. Communicated by: I Cirac & R de Wolf. G.A. is indebted to Alex Russell and Cris Moore for first telling us about the idea of approximating topological invariants by contracting tensor networks. We thank Stephen Jordan, Robert König and Dylan Thurston for useful conversations. G.A. acknowledges the support of NSERC, MITACS, and the U.S. ARO. E.B. thanks Ashwin Nayak and the University of Waterloo Combinatorics & Optimization department for accepting him into the summer URA program during which his contributions were conducted. E.B. acknowledges the support of NSERC.

Attached Files

Submitted - Quantum_algorithms.pdf

Files

Quantum_algorithms.pdf
Files (415.0 kB)
Name Size Download all
md5:6fc5b0f9719dbd608d975d05673a9b85
415.0 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023