Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 15, 2012 | Supplemental Material
Journal Article Open

The flux of iron and iron isotopes from San Pedro Basin sediments

Abstract

Iron is an important nutrient in the ocean, but the different sources and sinks of iron are not well constrained. Here, we use measurements of Fe concentration and Fe stable isotope ratios to evaluate the importance of reducing continental margins as a source of Fe to the open ocean. Dissolved iron concentration ([Fe]) and iron stable isotope ratios (δ^(56)Fe) were measured in the San Pedro and Santa Barbara basins. Dissolved δ^(56)Fe ranges from −1.82‰ to 0.00‰ in the San Pedro Basin and from −3.45‰ to −0.29‰ in the Santa Barbara Basin, and in both basins the lowest δ^(56)Fe values and highest Fe concentrations are found at the bottom of the basin reflecting the input of isotopically light Fe from reducing sediment porewaters. In the San Pedro Basin, we are also able to fingerprint an advective source of Fe from shallow continental shelves next to the basin and the atmospheric deposition of Fe into surface waters. A one-dimensional model of the Fe isotope cycle has been constructed for the deep silled San Pedro Basin. By fitting model output to data, values of several important iron cycle parameters are predicted including a flux of Fe from sediment porewaters into the water column of 0.32–1.14 μmol m^(−2) d^(−1), a first-order dissolved Fe precipitation rate constant of 0.0018–0.0053 d^(−1), a flux δ56Fe of −2.4‰, and an isotope effect for Fe precipitation of Δδ^(56)Fe_(particulate-dissolved) = −0.8‰. Applying our model-predicted Fe cycle parameters to the global ocean suggests that continental margins contribute 4–12% of world ocean dissolved Fe and make the ocean's Fe lighter by −0.08‰ to −0.26‰. The dramatically negative δ^(56)Fe signature seen in the water column of the San Pedro and Santa Barbara basins demonstrate the utility of Fe isotopes as a tracer for continental margin Fe input from reducing sediments to the oceans, while the isotopic fractionation observed during loss of Fe from the dissolved phase suggests that this signature will be modified by subsequent reactions. Our modeling provides an initial framework for testing how these signals are transmitted into the open ocean.

Additional Information

© 2012 Elsevier Ltd. Received 20 May 2011; accepted in revised form 3 June 2012; available online 23 June 2012. Associate editor: Mark Rehkamper.

Attached Files

Supplemental Material - mmc1.pdf

Files

mmc1.pdf
Files (77.1 kB)
Name Size Download all
md5:7a9be16aff6871774c433fd789f41622
77.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023